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Chris Barnet & Mitch Goldberg
STAR Science Forum

Oct. 21, 2005

Trace Gas Products from High
Resolution Infrared Instruments.

Walter Wolf: Near Real Time Processing & Gridding System
Lihang Zhou: Regression Retrieval & Near Real Time Web Page
Eric Maddy: CO2 retrieval, tuning, verticality
Xiaozhen Xiong: CH4 retrieval
Xingpin Liu: Re-processing, Statistics, Trace gas web-page
Fengying Sun: RTA upgrade installation & checkout
Jennifer Wei: START ozone experiment laison with NCAR
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Outline of Presentation

• Overview of the high spectral resolution instruments 
and products.

• Advantages of high spectral resolution, multi-spectral 
observations.

• Overview of trace gas products
– Ozone
– Carbon monoxide
– Methane
– Carbon dioxide

• Overview of product web page



3

Acronyms

• AIRS - Atmospheric Infrared Sounder
• IASI - Infrared Atmospheric Sounding 

Interferometer
• CrIS - Cross-track Infrared Sounder
• AMSU - Advanced Microwave Sounder Unit
• NDE – NPOESS Data Exploitation
• NPP - NPOESS Preparatory Project
• NPOESS - National Polar-orbiting Operational 

Environmental Satellite System



4

Thermal & Microwave Can be Used 
to Sound in Cloudy Scenes.

• Sounding is 
performed on a field 
of regard (FOR).

• FOR is currently 
defined by the size of 
the microwave 
footprint.

• IASI has 4 FOV’s per 
FOR

• AIRS & CrIS have 9 
FOV’s per FOR.

• ATMS is spatially 
oversampled can 
emulates an AMSU 
FOR.

AIRS, IASI, and CrIS all 
acquire 324,000 FOR’s per day
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AIRS, IASI, and CrIS Products per 50 
km field of regard (FOR)

• Cloud Cleared Radiance
• Temperature, 1K/ 1km
• Moisture, 5%
• Ozone, 5%
• Land/Sea Surface 

Temperature
• Surface Spectral 

Emissivity
• Surface Reflectivity
• Cloud Top Pressure

• Cloud Liquid Water 
(AMSU product)

• Cloud Fraction (per 15 km 
footprint).

• Carbon Monoxide, 15%
• Carbon Dioxide, 1%
• Methane, 1%
• Nitric Acid, 20%(?)
• Cirrus Cloud Optical Depth 

and Particle Size
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AIRS, AMSU, & MODIS have a Unique
Opportunity to Explore & Test New Algorithms

for Future Operational Sounder Missions.

5/2002

≥ 2008

12/2004

7/2004

≥ Oct 26, 2005
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NOAA/NESDIS Strategy
• Now: Develop and test atmospheric carbon algorithms using the 

Aqua AIRS/AMSU/MODIS Instruments
– AIRS has excellent radiometric accuracy and stability
– The A-train complement of instruments can be used to study effects of 

clouds, etc.
• 2006: Migrate the AIRS/AMSU/MODIS algorithm into 

operations with METOP/IASI/AVHRR
– Study the differences between grating and interferometric measurements, 
e.g., effects of scene and clouds on the instrument line-shape.

• 2008: Migrate the AIRS/IASI algorithm into operations for NPP 
& NPOESS CrIS/ATMS/VIIRS.   These are part of the “NOAA 
Unique Products” within the NOAA NPOESS Data Exploitation 
(NDE) program.

• 2012: Migrate AIRS/IASI/CrIS algorithm into GOES-
R/HES/ABI

• The polar instruments can provide 324,000 soundings in cloudy 
conditions per day for the next 20+ years
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Michelson Interferometer (FTS) Interferogram

Radiance SpectrumVertical Sounding

Source

Fixed Mirror

Moving
Mirror

Beam
Splitter 

Detector

Fourier Transformation

Numerical
Inversion

d1

d2 (d2-d1)

Interferometer Measurements to Soundings

Thanks to Steve Mango for this slide and next 2 slides.
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Agreement with NPP - Notional Concept

METOP 3
LAN 2130

“Mid-Morning”

NPOESS
LAN 1730

“Terminator Orbit”

NPOESS
LAN 1330

“Early-Afternoon”

NPP
LAN 2230

“Late-Morning”

NPP 
~2008-2013

Launches Lifetime       Ozone Sensors         Atmos Sounders
METOP  [2130] ~2006, 2011,  2016 5 yr GOME-2/IASI       IASI/AMSU/MHS
NPP         [2230] ~2008 5 yr OMPS/CrIS CrIS/ATMS
NPOESS [1330]         ~ 2010, 2016 7 yr OMPS/CrIS CrIS/ATMS/CMIS
NPOESS [1730] ~2013, 2019                  7 yr CrIS CrIS/ATMS/CMIS
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NPOESS Preparatory Project [NPP] 
“Bridge from EOS to NPOESS”

NPP

NPOESSEOS

AQUA LTAN  1330

“Bridges EOS & NPOESS 
Climate Measurement 

Missions”
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Retrieval of Atmospheric Trace Gases
Requires Unprecedented Instrument Specifications

• Need Large Spectral Coverage (multiple bands) & High Sampling
– Increases the number of unique pieces of information

• Ability to remove cloud and aerosol effects.
• Allow simultaneous retrievals of T(p), q(p), O3(p).

• Need High Spectral Resolution & Spectral Purity
– Ability to isolate spectral features → vertical resolution
– Ability to minimize sensitivity to interference signals.
– For channel subsets, apodization of interferogram (IASI & CrIS) improves 

spectral purity.
• Need Excellent Instrument Noise & Instrument Stability

– Low NE∆T is required.
– Apodization of interferograms (IASI & CrIS) creates a spectrally local 

correlated noise; however, information content is unaltered.
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Spectral Coverage of AIRS, IASI, 
and CrIS
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Spectral Resolution in Trace Gas 
Bands for AIRS, IASI, CrIS

1.130.50.61735 cm-1CO2

4.500.51.992385 cm-1CO2

4.500.51.792142 cm-1CO
2.250.51.091306 cm-1CH4

1.130.50.881045 cm-1O3

1.130.50.66791 cm-1CO2

CrIS
L=.8,.4,.2
(apodized)

IASI
L=2 cm

(apodized)

AIRS
ν/1200

Wave
Number

gas
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Instrument Noise, NE∆T at 250 K
(Interferometers are Apodized)

CO2
CO2CH4 CO

O3O3
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Ozone

• AIRS observes Ozone in daytime and nighttime using 
the 9.8 µm band.

• Validation campaign includes
– dedicated ozone sondes
– Comparisons w/ TOMS and Aura/OMI
– In-situ measurements (INTEX-A, START)

• Total column product (derived from profile) looks good; 
however, at this time we have issues with biases in the 
profile product.
– Spectroscopy issues
– Retrieval algorithm issues (training of regression to ECMWF 

& damping of physical retrieval)
– V5.0 should be considerably better.
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AIRS and TOMS Polar Night
Mike Newchurch (UAH),  Bill Irion (JPL)

Jan. 7, 2003
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AIRS daytime ozone 6/23/05

AIRS column (AIRS - OMI) / OMI

AIRS and Aura/OMI comparisons
Mike Newchurch (UAH),  Bill Irion (JPL)
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AIRS/Sonde comparison
Mike Newchurch (UAH),  Bill Irion (JPL)

Average (AIRS - Sonde) / Sonde profiles for V4.0.0 (left panel) and standard deviations 
(right panel).  “N” refers to the number of AIRS retrievals.  Several AIRS observations 
may be matched up to a single ozonesonde. AIRS observations are made with 2 hours 
and 100 km of ozonesonde launch. 
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AIRS interp
on the flight 
track

B57 in situ

ignore the black 
columns - poor 
handling of missing 
data

“Good agreement 
between AIRS and 
in situ between 50-
500 ppb”

Example of Laura Pan’s in-situ 
comparisons in dynamic regions
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Stratospheric-Tropospheric Analysis of 
Regional Transport (START) Experiment

• NOAA NESDIS will support this experiment with near 
real time AIRS L1b & L2 products, including v4.x 
ozone and carbon monoxide.

• Jennifer Wei will be our liason to START team.

• Laura Pan is PI of START Ozone team
• Nov. 21 to Dec. 23, 2005, 48 flight 

hours using NCAR’s new Golfstream
V “HAIPER” aircraft.

• Ozone measured with NCAR’s UV-abs 
spectrometer
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Carbon Monoxide

• Varies between 50 to 200 ppbv
• Lifetime is a few months
• Sources (Lelieveld, 1998):

– Fossil fuel combustion (e.g., catalytic converter 
on automobiles) ≈ 550 Tg/yr

– Forest Fires & Biomass Burning ≈ 400 Tg/yr
– Methane Oxidation ≈ 850 Tg/yr
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Jacobians are Useful for
Inter-comparison of Instruments

Observed minus Calculated Radiances Can be 
Represented by a Taylor Expansion about 
perturbations
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Carbon Monoxide S/N  for a 10% 
(10 ppb) Perturbation

Polar

Mid-Latitude

Tropical
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AIRS CO Kernel Functions are Sensitive
to H2O(p), T(p) & CO(p).

Polar Mid-Latitude Tropical
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Statistics of CO Retrieval for AIRS, IASI, and 
CrIS Simulated CLEAR Scenes

IASI has the most skill 
in lower troposphere

Background 
Variability

RMS BIAS
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CrIS CO Can be Improved

• CrIS OPD is 0.8 cm in all bands; however, the interferogram is not 
sampled beyond 0.2 cm in the SW band.

• Increasing sampling to OPD=0.4 or OPD=0.8 is technically 
feasible, but
– Schedule impact for NPP makes modification unlikely.
– Self-apodization issues complicates radiometric calibration.

• Information content is not affected unless new “resonances” are 
captured in the interferogram.
– CO resonance occurs at 0.26 cm and is captured by OPD=0.4 cm.
– CH4 resonance at 0.18 cm is captured in MW w/ OPD=0.4 cm.
– CO2 resonance at 0.64 cm is captured in LW w/ OPD=0.8 cm.

• Retrievals based on resolved lines are not improved.
– Number of samples per wavelength interval is proportional to OPD.
– Noise per Nyquist sample increases by SQRT(OPD).
– Noise/resolving element = SQRT(OPD)/SQRT(OPD) = 1
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Carbon Monoxide S/N  for a 10% (10 ppb) 
Perturbation if CrIS SWIR Band is OPD=0.8 cm

Polar

Mid-Latitude

Tropical
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Statistics of CO Retrieval for Full 
Resolution CrIS & AIRS, IASI
RMS BIAS

With increased OPD, 
CrIS is comparable 
to skill of IASI
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July 2004
AIRS Daily Global CO

Analysis of 
NOAA 
products by 
Wallace 
McMillan, 
Juying Warner, 
& Michele 
McCourt
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Methane

• Lifetime is on the order of 12 years
• Methane hydrate (4CH4+23H2O) is more 

abundant than all the world’s oil, gas, and coal 
combined.

• Significant sink is CH4-OH-CO coupling 
(Thompson, 1985)
– CH4 + OH → CO + H2O
– CO + OH → CO2 + H
– O3 + hv → O(1D) + O2
– O(1D) + H2O → 2OH



31

Methane Sources

energy 
(pipes,wells,coal 

mines)
18%

landfills
7%

wastewater
4%

domestic 
ruminants

13%

biomass burning
7%

rice paddies
13%

animal wastes
5%

tropical wetlands
16%

boreal/arctic 
wetlands

8%
termites

2%
other
7%

e
n
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Methane S/N for a 2% (36 ppb) 
Perturbation

Polar

Mid-Latitude

Tropical
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AIRS CH4 Kernel Functions are 
Sensitive to H2O(p) & T(p)

Polar Mid-Latitude Tropical
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Statistics of a Methane Retrieval for AIRS, 
IASI, and CrIS Simulated CLEAR Scenes.

RMS BIAS

AIRS, IASI, and 
CrIS have similar 
skill in mid-trop 
for single 50 km 
retrievals.

Background 
Variability
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Representing the vertical information content 
to compare CH4 product with models

CH4 model from Sander Houweling

(SRON)
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Carbon Dioxide

• Lifetime is 100 years
– conversion to limestone (CaCO2) is main sink.

• +5.5 GT/yr from fossil fuel emissions
– A car emits 5 lbs of C per gallon, at 25 m/g that is a charcoal 

briquette every ¼ mile (Gerry Stokes)
• +1.6 GT/yr from biomass burning
• Atmospheric concentration is well measured (Charles 

Keeling, Scripts)  + 1.5 ppmv/yr = 3.3 GT-C/yr
• Huge Terrestrial Annual Exchange 

(photosynthesis/respiration), 90 GT/yr
• Huge Ocean Exchange (phytoplanckton life cycle), 90 

GT/yr, NET -2 GT/yr
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The NOAA/CMDL Flask Network Monitors 
Seasonal Cycle and Inter-annual trends

• Flask network of ≈50 sites 
measures the surface
concentration of CO2 in mostly 
background locations.

• CMDL measurements show a 
large seasonal fluctuation of 
CO2 (positive values occur in 
winter, negative values in 
summer).

• The seasonal cycle is 
significantly stronger in 
northern latitudes (± 7 ppm).

• An average increase of 1.5 
ppm/yr is seen → 3.3 GT-C/yr
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Fossil Fuel Emissions
Jeeps of Carbon/capita/year
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Carbon Cycle is complex
with many time & spatial scales
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Uncertainties in Carbon
Budget Are Large

Fossil  Fuels
5.5 ± .3

To
 A

tm
os

ph
er

e
To

 L
an

d/
O

ce
an

Land use
Change
1.6 ± 0.8

Ocean
Uptake

-2.0 ± 0.6

Missing
Sink

-1.8 ± 1.5

Current 
source 
and sink 
strengths 
are 
uncertain.

Prediction 
of  future 
climate 
forcing is,  
therefore, 
uncertain 
as well.

Note: Units are in Giga-ton/yr = Peta (1015 ) gram/yr

Atmospheric
3.3 ± 0.1
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Partition and evolution of terrestrial and 
oceanic uptake is the critical issue.

Lisa Dilling, 2003
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CO2 S/N for a 1% (3.7 ppm) 
Perturbation

Polar

Mid-Latitude

Tropical
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Apparent:

• Phase shift and
amplitude reduction of 
seasonal cycle:

0.1434K +/- 0.01K -> 
2.9ppmv +/- 0.2ppmv

• Annual increase:
0.063K +/- 0.03K -> 

1.26ppmv +/- 0.6ppmv

What if you ignore CO2 and use 
infrared information

[Maddy, et al. OSA HISE-FTS, 2005.]

Surface CO2 best-estimate
[GLOBALVIEW-2004]
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CO2 Interference can be
removed from T(p) biases

• Simulation of 
temperature biases 
resulting from CO2 FG 
error.
– With 2% CO2 error in 

T(p) NCV (green, 
blue)

– Without CO2 in T(p) 
NCV (red, purple) 

• We are investigating 
this further with 
RAOB matchups.

Simulation T(p) Statistics

-1.0 -0.5 0.0 0.5 1.0
T(p) BIAS, K

1000

100

10

P
re

s
s
u
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, 
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360
360 + 2% CO2 error
CO2=TRUE
380 + 2% CO2 error
380
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Statistics of a CO2 Retrieval for AIRS, IASI, 
and CrIS Simulated CLEAR Scenes

AIRS, IASI, 
and CrIS have 
skill in mid-trop 
for single 50 km 
retrievals.

RMS BIAS
Background 
Variability
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AIRS 15µm CO2 Kernel Functions are also 
Sensitive to H2O, T(p), & O3(p).

Mid-LatitudePolar Tropical



47

AIRS product is the first climatology 
of CO2 in the mid-troposphere
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AIRS CO2 Product is Still in 
Development

• Measuring a product to 0.5% is inherently difficult
– Empirical bias correction (a.k.a. tuning) for AIRS is at the 0.1 K 

level and can remove the CO2 signal.
– Errors in moisture of ±10% is equivalent to  ±0.7 ppmv errors in 

CO2.
– Errors in surface pressure of ±5 mb induce ±1.8 ppmv errors in 

CO2.
– AMSU side-lobe errors prohibit using 57 GHZ O2 band as a 

T(p) reference point.
• We can characterize seasonal and latitudinal variability.
• The real questions is whether thermal sounders can 

contribute to the source/sink questions.
– Having simultaneous O3, CO, CH4, and CO2 products may be 

the unique contribution that thermal sounders can make.
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NOAA/NESDIS near-real time
AIRS page

Example, of 
channel 
monitoring 
using PC 
scores.

http://www.orbit.nesdis.noaa.gov/smcd/spb/airs/index.html
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Trace Gas Main Page

• Trace GAS paper allows 
quick look at the trace 
gas products as a 
function of geography, 
time, and w.r.t. to in-situ 
datasets.

• Will Use CH4 products 
as an example of some 
of the web-page 
capabilities

USERID & PASSWORD

Request via e-mail:

chris.barnet@noaa.gov
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Monthly, Weekly, and Bi-weekly 
maps of products exist:
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Many Options Exist for
Time-Series Analysis
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And inter-hemispheric transport
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Conclusions and Summary

High spectral resolution operational thermal sounders 
have the capability of measuring global atmospheric 
carbon for the next 20+ years.
CO product is robust and validation experiments are 
underway (e.g., INTEX, W. McMillan, UMBC)

CO from CrIS can be significantly improved if SW band is 
operated at L=0.4 or L=0.8 cm.

CH4 is difficult: preliminary analysis appears promising.
CO2 is significantly more difficult and many algorithms 
are being inter-compared.   Beginning to re-process 2 
years of acquired AIRS radiances.
AIRS, IASI, and CrIS may contribute to source/sink 
determination by simultanously measuring T(p), q(p), 
O3(p), CO, CH4, & CO2 globally.


